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SIMULATIONS OF FLOWS AND WATER DEPTH 
IN A DENDRITIC RIVER SYSTEM 
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SUMMARY 

This paper presents the development of a channel hydrodynamic model for simulating the behaviour of 
flows and water depths in a river network that may consist of any number of joined and branched 
rivers/streams, including both tidal and non-tidal rivers. The model employs a numerical method-an 
integrated compartment method (ICM). The method greatly facilitates the set-up of algebraic equations 
for the discrete field approximating the corresponding continuous field. 

Most of the possible boundary conditions that may be anticipated in real-world problems are 
considered. These include junctions, prescribed flow, prescribed water depth (or cross-sectional area), 
and rating curve boundaries. The use of ICM makes the implementation of these four types of 
boundary conditions relatively easy, 

The model is applied to two case studies: first to a single river and then to a network of five river 
branches in a watershed. Results indicate that the model can simulate the behaviour of the hyd- 
rodynamic variables that are required to compute chemical transport in a river-stream network. 

KEY WORDS Channel Flow River Modelling Integrated Compartment Method 

INTRODUCTION 

One of the critical issues involving existing chemicals and new chemical production is the 
safe use of potentially hazardous materials. Comprehensive assessments are needed to 
quantify the effects of chemical releases into the environment. Assessments would inevitably 
include transport, transformation, fate and pathway of the chemicals. They would also be 
concerned with exposure and the resulting health and ecological effects. 

Environmental releases of chemicals may occur to aquifers, surface water regimes, 
oceans/estuaries, the atmosphere, or even directly to biota. However, following the release, 
there will be redistribution of the chemical(s) into all media. One of the important pathways 
of the chemicals from source release will be the stream/river network. The ability to simulate 
flow dynamics and water depth as functions of system parameters and of space and time is a 
prerequisite to the analysis of chemical transport, transfer, and transformation in the 
stream/river network. This paper presents the development of a channel hydrodynamic 
model that computes flow rates, water depth, cross-sectional areas, top width, and wet 
perimeter as function of time and longitudinal distance along the river/stream system. These 
variables provide the advection and dispersion mechanisms for the companion transport 
model of sediments and chemicals.' Existing literature and practical computer codes that 
deal with the stream/river network have almost exclusively used the kinematic appr0ach.2~ 
The limitation of the kinematic approach is its inability to handle tidal rivers and backwater 

On the other hand, numerous reports are available that employ dynamic ap- 
proaches to handle general transient flow  condition^.^-^^ but most of these are limited to 
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single rivers or streams. The investigation of river networks with dynamic approaches has 
received great attention only since the early 1970~. ' "~~ Wood et a118s19 employed the method 
of characteristics to solve the full set of the Saint-Venant equations. The external boundary 
nodes and internal junctions were treated separately from the internal nodes by iterating the 
solution for interior nodes and that for the boundary nodes and junctions. Freads.l6 treated 
the dendritic river system as consisting of a main steam and tributaries. An implicit finite 
difference scheme was used to solve for the complete set of dynamic equations for the main 
stem and tributaries separately. Iteration procedures were used until a correct lateral inflow 
from the tributaries to the main stem was obtained. Akan and Yen14 presented a diffusion 
wave model to simulate unsteady flow in a dendritic network accounting for the downstream 
backwater effect by an overlapping technique. 

The present model is developed to enable the dynamic simulation of flows and water depth 
in a network of rivers and streams. The basic complete set of governing equations for flow 
rates and water depth derived from three-dimensional Reynolds-averaged Navier-Stokes 
equations is adapted. The governing equations included an additional term to Saint-Venant 
equations2' to account for turbulence and cross-sectional velocity shear. A minimum of 
approximations and assumptions are made. An integrated compartment method (ICM)," 
which is an extension of the integrated finite difference method (IFDM),22 is used to simulate 
the behaviour of the set of governing equations. In this method, the link matrices are derived 
based on the fluxes of mass and momentum along each of the links that intertwine the 
compartments of the river system. The global matrix is then assembled from link matrices. 
The junctions and interior nodes on all branches are treated simultaneously. 

MATHEMATICAL FORMULATION 

Most of the derivations of the governing equations for channel flow dynamics start with a 
small control volume between two channel cross-sections at a distance of Ax as shown in 
Figure l.9*23 The conservation principles of mass, Q, and momentum, M, are then applied to 

X 

Figure 1. Control volume for deriving channel equations 
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~~ 

Figure 2. Channel cross-section 

z =  H(x,t) 

-Y 

this slice of control volume. With this approach, many assumptions are lost, and boundary 
conditions on the transverse and vertical directions are not stated in the process of 
derivation. Instead, a general set of one-dimensional equations of continuity and momentum 
was derived by integrating the three-dimensional Reynolds-averaged Navier-Stokes equa- 
tions over a cross-sectional area (Figure 2) to yield the following:" 

aA ~ U A  
4 -+-= 

at ax 

In equations (1) and (2), x is the longitudinal co-ordinate along the flow direction; t is the 
time; A is the cross-sectional area; Q is the flow rate; U is the average velocity given by 
U = Q/A ; q is the source of lateral inflow per unit length that may result from precipitation 
on the river surface, surface runoff from land surface and seepage from groundwater; g is the 
gravitational acceleration; h is the water depth; zo is the elevation of the river bottom; p is 
the water density; m is the sum of the internal and external momentum sources per unit 
x-length; T~ is the wind stress exerted on the water surface; B is the width of the surface; T~ 
is the bottom shear stress; P is the wet perimeter and V, is the sum of eddy and dispersive 
viscosities. 

It should be noted that equation (2) differs from the Saint-Venant equations in that an 
additional term, V, a2Q/ax2, is included to account for turbulent momentum transfer and 
cross-sectional velocity shear. This term results from the cross-sectional integration of the 
three-dimensional Reynolds-averaged Navier-Stokes equations and is mainly due to the 
inhomogeneous flow velocity over the cross-section associated with the advection terms. In 
spite of the nebulous circumstances, the inclusion of this term has several attractive 
properties. It allows for internal friction and thereby energy dissipation; it does represent 
actual physical processes (although not necessary accurate) ; and it is particularly suitable for 
damping short wave noises generated by numerical methods. It is further noted that both h 
and zo in equation (2) are functions of x, y and t ;  the sum of h and zo is a function of x and t 
only. Hence to get rid of the dependence of equation (2) on the co-ordinate y, h from here 
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on  will be taken as the deepest depth at any cross-section and zo as the corresponding 
bottom elevation. 

In equation (2), the two unknowns, T~ and T ~ ,  are introduced as a result of cross-sectional 
integration. These two terms arise from the evaluation of the deviatoric stress tensor at the 
surface and the wet perimeter, respectively. 

Thus, the number of unknowns exceeds the number of equations for our problem. To 
tackle this problem, we reviewed the frequently used empirical relations for T~ and rb to 
establish a set of constitutive equations. It has been shown that under turbulent conditions, a 
quadratic bottom frictional law adequately represents the damping due to shear stress at the 
water-solid boundaries25 Several similar empirical expressions-Manning, Chezy , and 
Darcy-Weisbach equations26-were originally derived from measurements of steady flow in 
channels or pipes. They have been used successfully in transient ~tudies.7-l~ Those relation- 
ships are 

and 
rb = pCfU2 (3)  

(44  

where fDw, C, n, and R are the Darcy-Weisbach coefficients, the Chezy coefficient, the 
Manning roughness length, and the hydraulic radius, respectively. In this paper, the Manning 
formulation [that is equation (&)I is used to compute the bottom frictional force, since it has 
been proven and well accepted in the engineering community.27 

The wind stress on the surface, rw, is more complicated to handle because the water 
surface is deformable and the length scale of the turbulent wind field is large. Thus, the wind 
stress is highly variable in time and space. Several  investigator^^^-^^ derived expressions for 
the average wind stress from measurements in the field. Those expressions can be given by 
the following equation: 

rW PaCdW:O ( 5 )  

where pa is the air density, W,, is the wind speed at 10 m above the surface and C, is the 
wind drag coefficient. The value of c d  has been found to vary from approximately 0.001 
upwards, according to various  investigator^.^^-^^ 

Initial and boundary conditions 

Equations (1) and (2) and the channel geometry constitute the governing equations for the 
two dependent variables, Q and A. The geometry is characterized by the relationships 
between the cross-sectional area A and the water depth h, the water surface width B, and 
the wet perimeter P. To completely describe the physical system, initial and boundary 
conditions on Q and A must be provided. For any transient simulation, it will be assumed 
that Q and A are prescribed initially. They can be obtained either from field data or by 
simulating the steady-state version of equations (1) and (2). Both options are provided in this 
paper. The provision of prescribing the initial condition with steady state solution under 
time-invariant boundary conditions is particularly useful, since in many cases of field 
problems, initial values of Q and A are not explicitly available. 
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Four types of boundary conditions are considered in this paper. They arise mainly from 
physical considerations of most possible, real-world problems. These are: (i) prescribed flow 
Q, (ii) prescribed water depth h or the cross-sectional area A, (iii) prescribed functional 
relationship between flow and water elevation, and (iv) the junction of river branches. 
Conditions (i)-(iii) can be readily written in mathematical terms as follows: 

Q = Q,(t> 

A = A,(t) 
and 

where Q,, A,, and f are given flow rates, the given cross-section area, and the prescribed 
function, respectively. Condition (iv) may be obtained by the principle of conservation of 
mass. Considering a junction as shown in Figure 3, the continuity of water flow may be 
written as: 

where V, is the volume of the junction and Q1, Q2, and Q3 are the flow rates from river 
branches 1, 2, and 3, respectively. However, the values of Q1, Q2, and Q3 depend on the 
water elevation at the junction J as well as on their respective branch conditions. To 
uniquely define the problem, a relationship between the volume V, and its water depth hJ 
will be assumed to be describable. Written in mathematical terms, it is 

V J  =fJ(hJ) (10) 

Figure 3. Channel junction 
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Equations (6)-( 10) basically cover all the boundary conditions that may be anticipated in 
simulating the flow rate and water depth in any branched and joined river system. For 
example, equation (6) is normally applied to the upstream end, equation (7) to the 
downstream end, equation (8) to a weir or dam, and equations (9) and (10) to the place 
where two or more comparably sized rivers meet. The boundary condition of prescribed 
water depth is, in general, applied to the outlet of the river, since water is usually discharged 
into large water bodies where the water elevation is normally recorded. 

NUMERICAL ALGORITHM 

Analytical solutions of equations (1) and (2) under boundary conditions [equations (6)-(8)] 
do not exist for general problems. Numerical methods are thus needed to  simulate the 
behaviour of the system. An integrated compartment method (ICM)21 will be used for 
solving equations (1) and (2). 

As an example, a one-dimensional compartment i with length Ax, will be considered. It 
may be joined on either of its ends by a compartment j with length Ax, as shown in Figure 4. 

*i  m i  I 7 
Figure 4. Compartments and links 

Applying the principle of ICM to equation (l), we obtain the following equation for the 
discrete value of cross-sectional area A, at compartment i: 

dAi - AX, = - C (qj . Uij)A, + qi A% 
dt j = Y  

where Ni is the set of compartment numbers that joint compartment i (for our one- 
dimensional case, Ni will have two members), V, and Aij are the averaged velocity and 
cross-sectional area between compartments i and j ,  and nii is the directional sign from 
compartment i to compartment j. If it is along the positive direction from compartment i to 
compartment j ,  qj = 1. On the other hand, if it is along the negative direction, nij = -1. 
Consequently nij = - nji. 

Similarly applying the ICM method to equation (2), we obtain for the discrete value Q, at 
comDartment i : 

In equations (11) and (12), A, and Q, must be interpolated in terms of their nodal values 
(Ai, Aj and Q,, Qj) to close the system. In this paper, the following formulae are proposed. 

(AxjAi + AxiAj) 
(A% + Axi) 

A.. = 0 + 0 3 1  - 0)[(l+ y)Ai + (1 - y)Aj] 

and 
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where 8 is a number ranging from 0.0 to 1.0 and y is given by: 

and 

The value of 8 is determined by the time-integration scheme for equations (11) and (12). 
The value of 8 is equal to 0.0 for the explicit scheme, 0.5 for the Crank-Nicholson central 
difference, and 1.0 for the implicit scheme. 

Substituting equation (13)-(15b) into equations (11) and (12), we obtain the following 
system of ordinary differential equations for Q and A: 

and 

where [MI is the global diagonal matrix given by 

Mii=A&, I = l , 2 , 3 , .  . . 
Mik = 0, k f i  

{F} and {G} are the global column vectors given by 

e=Aax,qi, i = l , 2 , 3  ,... (19 

, i = l , 2 ,  . . .  (20) 

and 
Aqmi A& Gi = - (T:& - 7bpi) - B]{ZO} f - 

P P 

and [S], W] and [TI are the global banded matrices. These banded matrices are obtained by 
assembling the link matrices, which are to be defined in the following paragraph. 

Referring to Figure 4, the link i-j has as its end points global node numbers i and j, 
respectively. Let us denote i as node number 1 and j as node number 2 in the local 
numbering system. Then link matrices [[S], LWJ, and [,TI will each have four entries. These 
entries are obtained from equations (13) and (14) as follows: 
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and from linear interpolation of h, 

In equations (21a)-(23d), the subscript 1 in the lower left-hand corner of variables denotes 
the links. It is noted that equation (21a), (21b), (22a), and (22b) result in upstream 
interpolation on advection terms in equations (11) and (12) if 8 = 0.0, i.e. an explicit scheme. 
If an implicit scheme (0 = 1) is used to solve the matrix system [equations (16) and (17)], 
then the linear interpolation is followed and better accuracy is achieved. 

The assembling procedure of obtaining the global matrices from the link matrices is the 
same as that from element matrices in the finite element method. For example, the 
assembling of n] from [,TI is demonstrated as follows. For a given link, one will have a 2 x 2 
link matrix, [lTJ Each of the four entries in the matrix [IT] will constitute a fraction of the 
corresponding entries in the matrix fT]. If the corresponding global nodal numbers to local 
nodal numbers 1 and 2 are N1 and N2, then the entries ITl1, 1TlZ, ITzl, and IT22 of the link 
matrix [lfl are a partial sum of the entries TN1,N1, TNl,NZ, TNZ,N~, and TN2,N2 of the global 
matrix fT]. However, in the ICM algorithm, fT] is normally a banded matrix. Hence, 
denoting the half bandwidth plus one by IB, one would store the above four entries in the 
locations TNi,B, TNi,NZ-NI+m, TNZ,N~-N~+IB, and T~2.m. Thus the assembling procedure is 
quite simple. First, one should initiate all entries of the global matrix PI. Then for each link, 
one simply adds each of its four entries, ITll, iT21, and to the corresponding 

It is thus seen that the link in the ICM is equivalent to the element in the FEM and the 
linking compartments (nodes) equivalent to the element vertices (nodes). The major differ- 
ences between ICM and FEM are: (a) the link matrices are obtained by the simple 
interpolation of interfacial values in terms of its linking nodal values by equations (13) and 
(14) to yield equations (21a)-(23d), whereas the element matrices must be obtained by 
numerical integration of the basis functions and their derivatives over the element, (b) the 
size of a link matrix is always 2 x 2  no matter what the spatial dimension is in the ICM, 
whereas the size of an element matrix depends on the type of element used and on the 
spatial dimensionality in the FEM. Thus, the ICM has the advantages of the simple 
interpolation of finite differences to yield link matrices and of the automatic generation of 
the finite element method to form the global matrices. 

Equations (16) and (17) form a system of non-linear ordinary differential equations, since 
the matrices m] and [TI and the column vector {G} depend on the dependent variables {A} 

locations, TNi.IB, TNi,N2--Nl+IB, TNZ,NI-N2+IB9 and TNZ.m, of the global ~ a t r i x -  

and {QI. 
The following equations are used to compute the boundary values of Q and A: 

(i) For prescribed flow boundaries 

Qs = Q, 

where Q, is a given function of time and boundary node. 
(ii) For the prescribed cross-sectional area boundary: 
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(iii) For the prescribed rating curve boundary: 

QB =f(AB)  (26) 
in which f is a function relating the flow rate to the cross-sectional area at the 
boundary node. 

(iv) For a junction: 

In equations (24)-(27b), the subscript B denotes the value to be evaluated at the boundary, 
the subscript I represents the value at a compartment interfacing with the boundary or with 
the junction, the subscript J describes the value at the junction, and nu is the directional sign 
from node I to node J. 

By using the ICM method:' the original continuous problem [equations (1) and (2) 
subject to equations (6)-(lo)] is reduced to a system of ordinary differential equations in 
time [equations (16) and (17) subject to equations (24)-(27b)l. To complete the model, an 
effective technique must be developed to advance the solution in time from a given initial 
condition. The choice of scheme depends on required features of accuracy, stability, program 
ability, and computational efficiency. A thorough discussion of the time-integration schemes 
has been made elsewhere on the system of equations derived by finite difference  method^^*-^ 
and by finite element methods.35 Among the most commonly used schemes are (i) Euler's 
method, (ii) the trapezoidal rule, (iii) the improved trapezoidal rule, (iv) the iterative 
predictor-corrector method, (v) the Runge-Kutta methods, (vi) the time split method and 
(vii) the implicit method. 

For the present study, the time split scheme will be used because it offers advantages in 
computer storage, computational efficiency, and a good degree of accuracy. Two options are 
provided: one is the time split implicit scheme and the other is the time split explicit scheme. 

According to the time split implicit scheme, the advancement of {A} and {Q) from time 6") 
to time t("+') is accomplished through two calculation cycles. In the first calculational cycle, 
the field of (A("+1)} is obtained by solving the following simultaneous equations: 

([MI + Ar[S]){A("+')} = [M]{A(")} + At{@ (28) 

and in the second calculational cycle, the field {Q'"+')} is obtained by solving the following 
matrix equation: 

([M]+At[WI){Q'"+l)}=[IMl(Q'"'}-(At~h'"+l'}-{G}) (29) 
It should be noted that in evaluating the matrix m], the flow rates at the old time and 
cross-sectional area at the new time are used. 

When the option of the time split explicit scheme is used, the advancement of {A} and {Qt 
from time r(") to time t("+') is accomplished also through two calculational cycles. However, 
in the first cycle, equation (16) is used to compute the cross-sectional area field {A("+l)} as: 

where A?+') is the value of Ai evaluated at time (n + 1) Ar and Ar is the time step size. In 
the second cycle, equation (17) is used to compute the new flow field {Q'""} based on the 
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newly obtained {A("+')} and the old {Q'"'} as follows: 

It can be shown that the time split implicit scheme would yield an unconditionally linear 
stable solution. Thus, time step size can be very large, albeit dictated by the accuracy 
requirement and non-linear instability, which is very difficult to assess. O n  the other hand, 
the time step size for the time split explicit scheme will be limited by the Courant- 
Friedreichs-Lewy ~ondi t ion. '~  Nevertheless, this optional scheme is included because it 
offers advantages in computer storage requirement. 

APPLICATIONS 

Applications of the present model to a river network are demonstrated by two sample 
problems: a single river system and a network consisting of five river reaches. The validation 
of the model is a subject of future research. This paper deals mainly with the development 
and demonstration of the model. These two sample cases typify real-world problems. 

A single river problem 

To test the internal consistency of the computer code, a single river, 98 km long, is used 
(Figure 5).  The width of the river is assumed to be 200 m and the bottom lies on a horizontal 

Node 

L i n k  

Number 

Number 

Figure 5. Single-channel discretization 
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Figure 6. Boundary conditions for both the single river and river network problem 

plane. The river is assumed to have a Manning coefficient of 0.03 in equation (4) for the 
computation of stress exerted on the wet perimeter. The wind is assumed to be calm to yield 
T~ = 0.0. To perform the ICM computation, the river is divided into 100 compartments as 
shown in Figure 5. Compartment numbers 1-98 are the interior nodes. Compartment 
number 100 is a boundary node with a prescribed flow rate as function of time (Figure 6), 
and compartment number 99 is a boundary node with a prescribed water depth of 4 m. Both 
the prescribed flow and depth can be functions of time. The initial conditions are obtained by 
solving the steady-state version of equations (16) and (17) using the same computer program 
with upstream inflow of 160 m3/s and downstream water depth of 4 m. The simulation starts 
at time=Oh and ends at time=24h with a time step size of 60s. Figure 7 shows the 
simulated flows at node numbers 10, 30, 49,75, and 99. The results confirm what one would 
expect. The peak flows further downstream are smaller than those at upstream nodes. The 
lag time of peak flows is longer the further downstream the node is. After reaching the 
peak, hydrographs at all five locations decrease asymptotically to the constant steady-state 
rate of 160 m3/s. 

A river network problem 

One of the advantages of this model is its ability to deal with the river network that may 
consist of any number of joined and branched rivers/streams. To illustrate this point, a river 
network consisting of five river branches with two junctions is used (Figure 8). For the model 
simulation, the whole river network is divided into 36 compartments, three of which 
(compartment numbers 33, 34, and 35) are the prescribed-flow-boundary compartments. 
Compartment number 36 is a prescribed-depth-boundary compartment. Compartment num- 
bers 14 and 25 are junction compartments. These compartments are joined by 35 links. The 
prescribed flow rates at compartments 33, 34, and 35 as a function of time and the 
prescribed water depth at compartment 36 are shown graphically in Figure 6. The initial 
conditions are once again obtained by solving the steady-state version of equations (16) and 
(17) with the invariant flow rate of 160 m3/s imposed at compartments 33, 34, and 35, and 
the constant water depth of 4 m  at compartment 36. The steady-state hydrodynamic 
variables obtained by using these time-invariant boundary conditions are given in Table I. 
Examining this Table, one gains confidence in the consistency of the computer code, as the 
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Figure 7. Hydrographs at nodes 10, 30,49,75, and 99 for the single river problem 

water surface elevations at nodes 8, 7, 6, 5, and 4 are, respectively, equal to those at their 
corresponding nodes 13, 12, 11, 10, and 9 from the junction node 14 as expected. 
Furthermore, the elevations at nodes 18, 17, 16, and 15 are, respectively, greater than those 
at their corresponding nodes 23, 22, 21, and 20 from the junction node 25 because the flow 
rates at the former nodes are twice as large as those at the latter nodes. 

Using the transiet boundary conditions of Figure 6, Figure 9 shows the resulting flow rate 
at nodes 8, 13, 15, 19, 24, 26, and 32. It is noted that the hydrograph at node 15 is almost 
equal to the sum of those at nodes 8 and 13 because the storage effect of the junction node 
14 is small. Similarly, the hydrograph at node 26 is approximately equal to the sum of those 
at nodes 19 and 24. In contrast to the single river problem where the peak flows at 
downstream nodes are less than those at the upstream nodes, in this network system the 
peak flows at the downstream nodes are not necessarily smaller than those at the upstream 
nodes. For example, whereas the peak flow at node 19 is negligibly smaller than that at node 



DENDRITIC RIVER SYSTEM 243 

Figure 8. Channel network discretization 

15, the peak flow at node 26 is much larger than that at node 15 because of the addition of 
flow from node 24. 

Because no analytical solutions are available for the simultaneous system of equations 
(l)-(lO), it is not possible to assess the accuracy of the results presented in both examples by 
comparing them with those of analytical results. The only confidence one has here is that 
these results behave qualitatively as one would intuitively expect. The ultimate judgement of 
the model will have to be made by comparing the simulations with laboratory experiments 
and field data. Because the main purpose of this paper is to document the construction of the 
model, the validation will have to be deferred to later studies. 
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Table I. Steady state hydrodynamic variables for the river 
network problem. 

Variables Q A h B P 
Node m3 s-l m2 m m m 

1 160.0 881.5 4.407 200.0 208.8 
2 160.0 880.6 4.403 200.0 208.8 
3 160.0 879.7 4.399 200.0 208.8 
4 160.0 878.8 4.394 200.0 208.8 
5 160.0 878.0 4.390 200.0 208.8 
6 160.0 877.1 4.385 200.0 208.8 
7 160.0 876.2 4.381 200.0 208.8 
8 160.0 857.3 4.377 200.0 208.8 
9 160-0 878.8 4.394 200.0 208.8 

10 160-0 878.0 4.390 200.0 208.8 
11 160.0 877.1 4385 200-0 208.8 
12 160.0 876.2 4.381 200.0 208.8 
13 160.0 875.3 4.377 200.0 208.8 
14 320.0 175100 4.377 40000 43500 
15 320.0 875.3 4.376 200.0 208.8 
16 320.0 871.7 4.359 200-0 208-7 
17 320.0 868.1 4.341 200.0 208.7 
18 320.0 864.5 4.322 200.0 208.6 
19 320.0 860.8 4.304 200.0 208.6 
20 160.0 864.5 4.323 200.0 208.6 
21 160-0 863.6 4.318 200-0 208.6 
22 160.0 862.7 4.313 200.0 208.6 
23 160.0 861.7 4.309 200.0 208.6 
24 160.0 860.8 4.304 200.0 208.6 
25 480.0 172200 4.304 40000 43440 
26 480.0 860.8 4.304 200.0 208.6 
27 480.0 852.3 4.262 200.0 208.5 
28 480.0 843.6 4.218 200.0 208.4 
29 480-0 834.9 4.173 200.0 208.3 
30 480.0 825.2 4.126 200-0 208.3 
31 480-0 815.5 4.077 200.0 208.2 
32 480.0 805-4 4.027 200.0 208.1 
33 160-0 881.5 4.407 200-0 208.8 
34 160-0 878.8 4.394 200.0 208.8 
35 160-0 864.5 4.323 200.0 208.6 
36 480.0 800.0 4.000 200.0 208.0 

Note: For junction nodes, A is the compartment volume (m3); B is 
the surface area of the compartment, (m’); and P is the wet area, 
b2). 

CONCLUSION 

A dynamic model for simulating the water depth and flow rate for stream/river networks has 
been developed. The usefulness of the model is demonstrated by applying it to two cases. 
The first one is to a single river problem to check the consistency of the computational 
algorithm and computer code. The second case is to a river network consisting of five river 
branches of comparative size. These applications yield qualitative results that one would 
expect. Quantitative verifications require further studies. 
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Figure 9. Hydrographs at nodes 8, 13, 15,19,24, 32, and 36 for the river network problem 
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